
Methodology for Freestanding Development.

Amlal El Mahrouss.
amlal@nekernel.org

December 2025

Abstract

Many low-level software have been shipped using the C programming language. And some
of them, such as EKA2 use the C++ programming language. Although notoriously difficult,
one may adapt to those constraints in order to deliver one such operating system kernel. This
is why most production-grade software (Linux, XNU, and NT) are mostly written in C. With
a higher-level subset in C++. However, when correctly applying the following principles to
freestanding development, it becomes much easier to ensure correctness of such programs.

1 The Three Principles of Freestanding Development.

1.1 I: The Run-Time Domain.

The problem lies in the programming language runtime, which assumes an existing host. The
contrary of a hosted environment is freestanding, a computing mode which doesn’t expect
a hosted runtime. Such programs may use the compile-time evaluation domain to achieve
minimal run-time domain usage.

1.2 II: The Compile-Time Evaluation Domain.

One may avoid Virtual Method Tables or a runtime when possible. While focusing instead
on meta-programming and compile-time features offered by C++. For example one may use
templates to implement a scheduling policy algorithm. One example of such implementation
may be:

1 struct FileTree final {

2 static constexpr bool is_virtual_memory = false;

3 static constexpr bool is_memory = false;

4 static constexpr bool is_file = true;

5 /// ...

6 };

7

8 struct MemoryTree final {

9 static constexpr bool is_virtual_memory = false;

10 static constexpr bool is_memory = true;

11 static constexpr bool is_file = false;

12 /// ...

13 };

Source: Link.
Which is why the ‘constexpr’ keyword is very powerful here for the Compile-Time Evaluation
Domain, we avoid the many pitfalls of the Run-Time Evaluation Domain.

1

https://github.com/nekernel-org/nekernel/blob/develop/src/kernel/KernelKit/CoreProcessScheduler.h#L78-L105


1.3 III: Memory Layout and the example of C++.

The Virtual Method Table (now defined as the VMT) is a big part of the problem, one may
illustrate the following:

1 /// /std:c++20 /Wall

2

3 #include <iostream >

4

5 class A

6 {

7 public:

8 explicit A() = default;

9 virtual ~A() = default;

10

11 virtual void doImpl ()

12 {

13 std::cout << "doImpl ()\r\n";

14 }

15 };

16

17 class B : public A

18 {

19 public:

20 explicit B() = default;

21 ~B() override = default;

22 };

23

24 int main() {

25 B callImpl;

26 callImpl.doImpl ();

27 }

Source: Link.
The following can instead be done to achieve similar results using the Compile-Time Evaluation
Domain.

1 inline constexpr auto kInvalidType = 0;

2

3 template <class Driver >

4 concept IsValidDriver = requires(Driver drv) {

5 { static_assert(drv.IsActive () && drv.Type() > kInvalidType , "Driver is not

valid for usage.") };

6 };

Source: Link.
Now, the problem with freestanding development is that such feature may be abused, and it
is mitigated by following the TTPI.

1.4 IV: The Three Prongs on Inheritance Decision Framework.

The TTPI is a boolean framework used to evaluate whether one may consider using a Object
Oriented programming language inside a freestanding program, consider the following:

1: Is this implementable with compile-time protocols/concepts?

2: Is this implementable without three trade-off costs?

Without violating the Runtime cost?

The Verification cost?

The Known-Ahead-Correctness cost?

3: Is this implementable without using a VMT?

If two of the three conditions fail, then the framework fails, and you should consider finding
another solution to your problem as it surely has an equivalent without the problematic aspects.

2

https://godbolt.org/z/aK6Y98xnd
https://github.com/nekernel-org/nekernel/blob/develop/src/libDDK/DriverKit/c%2B%2B/driver_base.h


1.5 V: Compile-Time Vetting in a Freestanding Domain.

The following concept makes sure that the ‘class T’ is vetted by the domain. Such properties
are called ‘Vettable’ such program in the domain makes sure that a ‘Container’ is truly deemed
fit for a Run-Time or Compile-Time Evaluation Domain. The ‘Vettable’ structure makes use
of template meta-programming in C++ to evaluate whether a ‘Container’ shall be vetted.
Such system may look as such in a Compile-Time Evaluation Domain:

1 #define NE_VETTABLE static constexpr BOOL kVettable = YES;

2 #define NE_NON_VETTABLE static constexpr BOOL kVettable = NO;

3

4 template <class Type >

5 concept IsVettable = requires(Type) {

6 (Type:: kVettable);

7 };

8

9 /// This structure is vettable.

10 struct UnVettable {

11 NE_VETTABLE;

12 };

13

14 /// This structure is unvettable.

15 struct UnVettable {

16 NE_NON_VETTABLE;

17 };

18

19 /// One example of a usage.

20 if constexpr (IsVettable <UnVettable >) {

21 instVet ->Vet();

22 } else {

23 instVet ->Abort();

24 }

Source: Link.

2 VI: Conclusion

Safe and correct development in a freestanding domain is indeed possible granted the above
concepts are applied and respected.

3 References

1. NeKernel.org (2025). NeKernel Operating System. Available at: https://nekernel.org

2. Sales, J., Tasker, M. (2005). Introducing EKA2. Symbian OS Internals. Wiley. Available
at: https://media.wiley.com/product_data/excerpt/47/04700252/0470025247.pdf

3. Driesen, K., Hölzle, U. (1996). The direct cost of virtual function calls in C++. OOPSLA
’96. ACM. DOI: 10.1145/236338.236369

3

https://github.com/nekernel-org/nekernel/blob/develop/src/kernel/NeKit/Vettable.h
https://nekernel.org
https://media.wiley.com/product_data/excerpt/47/04700252/0470025247.pdf

	The Three Principles of Freestanding Development.
	I: The Run-Time Domain.
	II: The Compile-Time Evaluation Domain.
	III: Memory Layout and the example of C++.
	IV: The Three Prongs on Inheritance Decision Framework.
	V: Compile-Time Vetting in a Freestanding Domain.

	VI: Conclusion
	References

