
 
 
 
 
 
 
 
 
 
 
 

Inside 64x0 
Amlal El Mahrouss — NeKernel.org 

 
Revision I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Inside 64x0 
————————————————————————————————————————— 
 
General information: 
 
The NeKernel.org Open64x0 is a 128-bit RISC CPU, made with HPC computing in mind. It includes 
Out of order, Superscalar uArch called Harvard, you are reading it’s programming manual, It is 
assumed that you are familiar with the concept of registers, memory, instruction encoding and stack 
(FIFO, LIFO) 
 
Register bank: 
 
The NeKernel.org Open64x0 ISA consists of twenty general purpose registers and ten floating point 
registers. 
 
Addressing modes: 
 
The NeKernel.org Open64x0 has 3 instruction encoding: Register to Register, System call and 
Immediate. 
 
They all start with the same format, opcode, funct3 and funct7, where these differ is after the (funct7), 
System call addressing takes its values from the stack, where as register to register addressing expects 
at least two registers within [0, 35], Immediate is quite different, for instance, use 'stw' to store a 
64-bit word into a register. or 'lda' to load r0 from a register address. This helps to actually load useful 
stuff into registers. 
 

The operating system is heavily encouraged to lookup for labels such as: 
(3:RuntimeSymbol:<Symbol>). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Inside 64x0 
————————————————————————————————————————— 
 
Figure 1: Register list of the X64000 
 

Register name Mnemonic 

r0 Hardwired Zero Register 

r1 Address Register 1 

r2 Address Register 2 

r3 Address Register 3 

r4 Address Register 4 

r5 Stack Register 

r6 Data Register 1 

r7 Data Register 2 

r8 Data Register 3 

r9 Data Register 4 

r10 Temporary Register 1 

r11 Temporary Register 2 

r12 Temporary Register 3 

r13 Temporary Register 4 

r14 Temporary Register 5 

r15 Condition Register 1 

r16 Condition Register 2 

r17 Program Counter Register 

r18 Control Register 

r19 Return Address register 

 
 
 
 
 
 
 



 
Inside 64x0 
————————————————————————————————————————— 
 
Figure 2: Instruction encodings: 
 
Figure 2.a: Register to Register encoding: 
 

OPCODE FUNCT3 FUNCT7 REG_LEFT REG_RIGHT 

 
Figure 2.b: Immediate encoding: 
 

OPCODE FUNCT3 FUNCT7 REG_LEFT OFFSET REG_RIGHT 

OPCODE FUNCT3 FUNCT7 REG OFFSET UNUSED 

OPCODE FUNCT3 FUNCT7 REG_LEFT REG_RIGHT OFFSET 

 
Figure 2.c: Jump encoding: 
 
 

OPCODE FUNCT3 FUNCT7 OFFSET 

 
 

What do they (funct3, funct7) even mean? 
 

Opcode stands for operation code, it's the instruction you want to perform, whereas the funct3 
tells it what it does, and funct7 what it is (that's btw how we tell what kind of encoding it uses). 
 
For example take a load operation from 0x0000000 to r13, you need to make sure that you even want 
to load it. so opcode=0b0000011 and funct3=0b101. 


